Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nucleic Acids Res ; 50(3): 1484-1500, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1624985

ABSTRACT

The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Exoribonucleases/metabolism , Genome, Viral/genetics , Genomic Instability , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Exoribonucleases/antagonists & inhibitors , Genome, Viral/drug effects , Genomic Instability/drug effects , Genomic Instability/genetics , HIV Integrase Inhibitors/pharmacology , Isoindoles/pharmacology , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Organoselenium Compounds/pharmacology , RNA, Viral/biosynthesis , RNA, Viral/genetics , Raltegravir Potassium/pharmacology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Virus Replication/drug effects , Virus Replication/genetics
2.
Molecules ; 26(20)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1518621

ABSTRACT

In continuation of our previous effort, different in silico selection methods were applied to 310 naturally isolated metabolites that exhibited antiviral potentialities before. The applied selection methods aimed to pick the most relevant inhibitor of SARS-CoV-2 nsp10. At first, a structural similarity study against the co-crystallized ligand, S-Adenosyl Methionine (SAM), of SARS-CoV-2 nonstructural protein (nsp10) (PDB ID: 6W4H) was carried out. The similarity analysis culled 30 candidates. Secondly, a fingerprint study against SAM preferred compounds 44, 48, 85, 102, 105, 182, 220, 221, 282, 284, 285, 301, and 302. The docking studies picked 48, 182, 220, 221, and 284. While the ADMET analysis expected the likeness of the five candidates to be drugs, the toxicity study preferred compounds 48 and 182. Finally, a density-functional theory (DFT) study suggested vidarabine (182) to be the most relevant SARS-Cov-2 nsp10 inhibitor.


Subject(s)
Antiviral Agents/chemistry , Biological Products/chemistry , SARS-CoV-2/metabolism , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , Biological Products/metabolism , Biological Products/therapeutic use , COVID-19/pathology , Density Functional Theory , Humans , Ligands , Molecular Docking Simulation , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , SARS-CoV-2/isolation & purification , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/therapeutic use , Vidarabine/chemistry , Vidarabine/metabolism , Vidarabine/therapeutic use , Viral Regulatory and Accessory Proteins/metabolism , COVID-19 Drug Treatment
3.
FEBS J ; 288(17): 5130-5147, 2021 09.
Article in English | MEDLINE | ID: covidwho-1388264

ABSTRACT

SARS-CoV-2 virus has triggered a global pandemic with devastating consequences. The understanding of fundamental aspects of this virus is of extreme importance. In this work, we studied the viral ribonuclease nsp14, one of the most interferon antagonists from SARS-CoV-2. Nsp14 is a multifunctional protein with two distinct activities, an N-terminal 3'-to-5' exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), both critical for coronaviruses life cycle, indicating nsp14 as a prominent target for the development of antiviral drugs. In coronaviruses, nsp14 ExoN activity is stimulated through the interaction with the nsp10 protein. We have performed a biochemical characterization of nsp14-nsp10 complex from SARS-CoV-2. We confirm the 3'-5' exoribonuclease and MTase activities of nsp14 and the critical role of nsp10 in upregulating the nsp14 ExoN activity. Furthermore, we demonstrate that SARS-CoV-2 nsp14 N7-MTase activity is functionally independent of the ExoN activity and nsp10. A model from SARS-CoV-2 nsp14-nsp10 complex allowed mapping key nsp10 residues involved in this interaction. Our results show that a stable interaction between nsp10 and nsp14 is required for the nsp14-mediated ExoN activity of SARS-CoV-2. We studied the role of conserved DEDD catalytic residues of SARS-CoV-2 nsp14 ExoN. Our results show that motif I of ExoN domain is essential for the nsp14 function, contrasting to the functionality of these residues in other coronaviruses, which can have important implications regarding the specific pathogenesis of SARS-CoV-2. This work unraveled a basis for discovering inhibitors targeting specific amino acids in order to disrupt the assembly of this complex and interfere with coronaviruses replication.


Subject(s)
COVID-19/genetics , Exoribonucleases/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/virology , Drug Design , Exoribonucleases/antagonists & inhibitors , Humans , Multiprotein Complexes/drug effects , Multiprotein Complexes/genetics , Protein Interaction Maps/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Virus Replication/genetics , COVID-19 Drug Treatment
4.
Biochem J ; 478(13): 2445-2464, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1290093

ABSTRACT

SARS-CoV-2 is a coronavirus that emerged in 2019 and rapidly spread across the world causing a deadly pandemic with tremendous social and economic costs. Healthcare systems worldwide are under great pressure, and there is an urgent need for effective antiviral treatments. The only currently approved antiviral treatment for COVID-19 is remdesivir, an inhibitor of viral genome replication. SARS-CoV-2 proliferation relies on the enzymatic activities of the non-structural proteins (nsp), which makes them interesting targets for the development of new antiviral treatments. With the aim to identify novel SARS-CoV-2 antivirals, we have purified the exoribonuclease/methyltransferase (nsp14) and its cofactor (nsp10) and developed biochemical assays compatible with high-throughput approaches to screen for exoribonuclease inhibitors. We have screened a library of over 5000 commercial compounds and identified patulin and aurintricarboxylic acid (ATA) as inhibitors of nsp14 exoribonuclease in vitro. We found that patulin and ATA inhibit replication of SARS-CoV-2 in a VERO E6 cell-culture model. These two new antiviral compounds will be valuable tools for further coronavirus research as well as potentially contributing to new therapeutic opportunities for COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Exoribonucleases/antagonists & inhibitors , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Animals , Aurintricarboxylic Acid/pharmacology , Chlorocebus aethiops , Enzyme Assays , Exoribonucleases/metabolism , Fluorescence , High-Throughput Screening Assays , Patulin/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Vero Cells , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism
5.
SLAS Discov ; 26(6): 757-765, 2021 07.
Article in English | MEDLINE | ID: covidwho-1194439

ABSTRACT

Frequent outbreaks of novel coronaviruses (CoVs), highlighted by the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, necessitate the development of therapeutics that could be easily and effectively administered worldwide. The conserved mRNA-capping process enables CoVs to evade their host immune system and is a target for antiviral development. Nonstructural protein (nsp) 16 in complex with nsp10 catalyzes the final step of coronaviral mRNA capping through its 2'-O-methylation activity. Like other methyltransferases, the SARS-CoV-2 nsp10-nsp16 complex is druggable. However, the availability of an optimized assay for high-throughput screening (HTS) is an unmet need. Here, we report the development of a radioactivity-based assay for the methyltransferase activity of the nsp10-nsp16 complex in a 384-well format, kinetic characterization, and optimization of the assay for HTS (Z' factor = 0.83). Considering the high conservation of nsp16 across known CoV species, the potential inhibitors targeting the SARS-CoV-2 nsp10-nsp16 complex may also be effective against other emerging pathogenic CoVs.


Subject(s)
Adenosine/analogs & derivatives , High-Throughput Screening Assays , RNA Caps/antagonists & inhibitors , RNA, Viral/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Adenosine/chemistry , Adenosine/pharmacology , COVID-19/virology , Cloning, Molecular , Enzyme Assays , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Methylation , Methyltransferases , Models, Molecular , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Tritium , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism
6.
SLAS Discov ; 26(5): 620-627, 2021 06.
Article in English | MEDLINE | ID: covidwho-1021348

ABSTRACT

SARS-CoV-2, the coronavirus that causes COVID-19, evades the human immune system by capping its RNA. This process protects the viral RNA and is essential for its replication. Multiple viral proteins are involved in this RNA capping process, including the nonstructural protein 16 (nsp16), which is an S-adenosyl-l-methionine (SAM)-dependent 2'-O-methyltransferase. Nsp16 is significantly active when in complex with another nonstructural protein, nsp10, which plays a key role in its stability and activity. Here we report the development of a fluorescence polarization (FP)-based RNA displacement assay for nsp10-nsp16 complex in a 384-well format with a Z' factor of 0.6, suitable for high-throughput screening. In this process, we purified the nsp10-nsp16 complex to higher than 95% purity and confirmed its binding to the methyl donor SAM, the product of the reaction, S-adenosyl-l-homocysteine (SAH), and a common methyltransferase inhibitor, sinefungin, using isothermal titration calorimetry (ITC). The assay was further validated by screening a library of 1124 drug-like compounds. This assay provides a cost-effective high-throughput method for screening the nsp10-nsp16 complex for RNA competitive inhibitors toward developing COVID-19 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , High-Throughput Screening Assays , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Adenosine/analogs & derivatives , Adenosine/pharmacology , Binding, Competitive , COVID-19/virology , Enzyme Inhibitors/pharmacology , Fluorescence Polarization , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Humans , Methyltransferases , Protein Binding , RNA Caps/antagonists & inhibitors , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Signal Transduction , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication , COVID-19 Drug Treatment
8.
J Recept Signal Transduct Res ; 40(6): 605-612, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-457256

ABSTRACT

Recently, a pathogen has been identified as a novel coronavirus (SARS-CoV-2) and found to trigger novel pneumonia (COVID-19) in human beings and some other mammals. The uncontrolled release of cytokines is seen from the primary stages of symptoms to last acute respiratory distress syndrome (ARDS). Thus, it is necessary to find out safe and effective drugs against this deadly coronavirus as soon as possible. Here, we downloaded the three-dimensional model of NSP10/NSP16 methyltransferase (PDB-ID: 6w6l) and main protease (PDB-ID: 6lu7) of COVID-19. Using these molecular models, we performed virtual screening with our anti-viral, inti-infectious, and anti-protease compounds, which are attractive therapeutics to prevent infection of the COVID-19. We found that top screened compound binds with protein molecules with good dock score with the help of hydrophobic interactions and hydrogen bonding. We observed that protease complexed with Cyclocytidine hydrochloride (anti-viral and anti-cancer), Trifluridine (anti-viral), Adonitol, and Meropenem (anti-bacterial), and Penciclovir (anti-viral) bound with a good docking score ranging from -6.8 to -5.1 (Kcal/mol). Further, NSP10/NSP16 methyltransferase complexed with Telbivudine, Oxytetracycline dihydrate (anti-viral), Methylgallate (anti-malarial), 2-deoxyglucose and Daphnetin (anti-cancer) from the docking score of -7.0 to -5.7 (Kcal/mol). In conclusion, the selected compounds may be used as a novel therapeutic agent to combat this deadly pandemic disease, SARS-CoV-2 infection, but needs further experimental research.HighlightsNSP10/NSP16 methyltransferase and main protease complex of SARS CoV-2 bind with selected drugs.NSP10/NSP16 methyltransferase and protease interacted with drugs by hydrophobic interactions.Compounds show good DG binging free energy with protein complexes.Ligands were found to follow the Lipinski rule of five.


Subject(s)
Antiviral Agents/chemistry , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Viral Nonstructural Proteins/chemistry , Viral Regulatory and Accessory Proteins/chemistry , Acyclovir/analogs & derivatives , Acyclovir/chemistry , Acyclovir/therapeutic use , Ancitabine/chemistry , Ancitabine/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Drug Evaluation, Preclinical , Guanine , Humans , Meropenem/chemistry , Meropenem/therapeutic use , Methyltransferases , Models, Molecular , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/virology , Protein Conformation/drug effects , Ribitol/chemistry , Ribitol/therapeutic use , SARS-CoV-2 , Trifluridine/chemistry , Trifluridine/therapeutic use , User-Computer Interface , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/ultrastructure , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL